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The effect of variable stratification on the linear bifurcations of a doubly diffusive 
plane parallel layer is examined numerically by expanding in a Fourier series. Because 
the motivation is analysis of solar-pond stability, a Prandtl number of 7 and ratio 
of diffusivities of &, is used in the study, with (large) solute Rayleigh numbers Rs 
ranging from lo4 to 10la. Stratification of solute is cubic antisymmetric about 
midlayer; because temperature has a higher diffusivity, it is given a linear stratifi- 
cation. Exchange of stabilities results also solve the ‘fingering’ and thermal problems 
with cubic stratification. For the overstable case, the numerical results approach 
Walton’s perturbation solution at  large Rs, but differ significantly at smaller Rs 
( -c lo8). While both exchange of stabilities and overstable modes display an expected 
tendency to localize about the point of minimum solute gradient, the overstable 
modes behave in other, non-intuitive ways. Sublayers of reversed salinity gradient, 
if small enough, can be stable. Above Rs = 1Ol8 computations become prohibitively 
expensive as a continuous spectrum is approached. A simple sublayer scaling rule 
defines an infinite family of Rs end stratification parameters on which the localized 
eigensolution is nearly invariant. 

1. Introduction 
The aim of this investigation was to determine the effects of variable stratification 

on the doubly diffusive instability of large layers of brine heated and salted from 
below. We consider large values of the solute Rayleigh number given by 

9B As Rs = 
VK ’ 

where g is the acceleration due to gravity, B is the density coefficient of salting, A S  
is the salinity of the bottom of the layer minus the surface salinity, h is the depth 
of the layer, and v and K are respectively the kinematic viscosity and thermal 
diffusivity of the brine. The relevant Prandtl number Pr = Y / K  and ratio of 
diffusivities 7 = D/K are taken to have the nominal values of 7 and &, respectively, 
where D is the diffusivity of salt in water. Thus interest is focused on very large Rs 
and small 7. 

The interest in this question arose in conjunction with the first author’s dis- 
sertation research on the feasibility of salt-gradient solar ponds (Zangrando 1979) 
under field conditions. The pond, about two metres deep, consists of water with 
salt dissolved in it such that the bottom metre has a uniformly large salinity, 
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while the salinity of the topmost metre decreases with height. This top layer is 
thus made resistant to thermal convection because of the increase of density with 
depth caused by the salting, even when the layer is heated from below. Since water 
is a poor heat conductor, this metre layer serves to insulate the solar-heated 
bottom layer, even when the bottom temperature exceeds the surface temperature by 
80 "C (i.e. the bottom layer has been brought to 109 "C). Under operating conditions, 
a mixed layer develops at the surface; its temperature remains within a few degrees 
of average ambient temperature, so there are in reality three layers. This 
arrangement serves as both a collector of solar energy and a storage medium, so 
long as the insulating layer (the layer with salt and temperature gradients) does 
not convect heat to the surface. 

In  the course of the research, suspended isothermal sublayers a few centimetres 
deep appeared in the interior of the insulating layer, clearly separated from the 
interfaces at the top and bottom of the layer. These isothermal sublayers were 
presumably the result of convective motions, and they displayed no oscillations 
in time, as would be expected from constant-gradients linear theory. Sometimes the 
sublayers would decay and disappear; sometimes they would evolve into a stairstep 
of further sublayers ; and sometimes they would remain stationary. This behaviour 
suggests that the first sublayers appeared at a neutrally stable stratification 
of the gradient layer. 

Theoretical prediction of neutral stability for infinite plane-parallel layers 
with constant gradients of temperature and salinity yields critical values of 
thermal Rayleigh number 

Ra = 7 

where a is the coefficient of thermal expansion and AT is the bottom temperature 
minus the top temperature. For free-free boundary conditions, Stern (1960) and 
Weinberger (1962) obtained for exchange of stabilities (bifurcation to a steady 
solution) the critical value 

ga AT hS 
VK 

(1) 
Rs 

Rae,, = 7 + Rb ; 

and, for overstable modes (Hopf bifurcation), 

where Rb is the BBnard eigenvalue for the same singly diffusive problem (Chandra- 
sekhar 1961). 'Large R5' will mean Rs % Rb here, so the terms proportional to Rb in 
(1) and (2) will be negligible. For brine values of Pr and 7 ,  Ra,, will be less than Ra,,,, 
as depicted in figure 1, and the critical mode should be oscillatory. 

However, observed pond motions were apparently steady, and occurred at Ra as 
low as fRa,, (Zangrando 1979). Our general aim here is to identify the source of this 
discrepancy. 

One possible explanation is due to Joseph (1976), who gave the necessary and 
sufficient condition for the existence of growing finite-amplitude motions as 

For large Rs, this gives R, - ~ R s ,  a factor of 80 smaller than Ra,,. This drastic 
reduction of the critical Ra raises the question of how, if a t  all, the solutions growing 
from the linear bifurcation points ( 1 )  and (2) could evolve into a mode which reaches 
this energy limit; that is, what the form of the bifurcation diagram should be 
(figure 2). 

Ra 2 R, = { ( T R s ) ~  + [ (1 - 7') Rb]t}'. (3) 
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FIQURE I.  Stability loci (schematic). Lines EOS (exchange of stabilities, equation (1)) and 0s 
(overstable, equation (2)) indicate linear neutral-stability loci. A typical pond observation 
parameter is indicated by Rap. Curve E is the minimum Ra locus which is necessary and sufficient 
for existence of second-order finite-amplitude steady solutions, and for global energy instability. 
Rbi = TSRb/(  1 - 7 ) O  is the value at which steady bifurcation becomes subcritical and 

NU- 1 

FIQURE 2. Schematic composite bifurcation diagram for doubly diffusive convection with given 
(fixed) large Rs, small 7. The vertical axis is Nusselt number minus one, so the conductive solution 
lies along the horizontal axis. Solid lines denote stable branches; broken lines denotes unstable 
branches. Bifurcations occur at  0s and EOS with Ra given by (1) and (2), while the vertical dotted 
line indicates the energy stability limit (3). The finite-amplitude branches emanating from the 
bifurcation points are both subcritical for the (7, Pr, &)-range of interest, because the overstable 
mode becomes subcritical between 8600 and 9OOO. The turning pointa (So,, Sms) on the subcritical 
branches are probably much nearer 0s than E; both are to the left of the 0s bifurcation. The 
oscillatory branch may contain a strange attractor (SA) and may end on the steady branch with 
infinite period at point P. Observed pond motions could be either finite-amplitude oscillatory 
motions (OJ, or steady motions (OJ, or even chaotic motions (SA), depending on disturbances 
applied after Ra exceeds the linear critical value a t  0s. 
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An early indication that this connection might occur at moderate amplitudes was 
given by Veronis (1965) by solving the second-order model problem (the doubly 
diffusive version of the Saltzman (1962kLorenz (1963) model of the BBnard problem). 
He found that the EOS branch was strongly subcritical, and turned around at 
Ra = R,. He also clearly identified the mode of such a steady motion with the much 
more effective convective transport of salt as compared to heat when 7 is small. 
However, in the purely thermal problem, subsequent elaboration of the Lorenz model 
indicated that the complications, including chaotic motions (strange attractors), 
appeared at larger and larger amplitudes for more accurate solutions (Curry 1977; 
Toomre, Gough & Spiegel 1977; Marcus 1981), raising questions as to how sensitive 
nonlinear solutions are to detail. Experimental observation of chaotic motion by 
Gollub & Benson (1980) suggests that this behaviour is realistic and should appear 
on the BBnard bifurcation diagram. 

For the doubly diffusive problem, further developments by asymptotic analysis 
(Veronis 1968; Siegman & Rubenfeld 1975; Rubenfeld & Siegman 1977; Knobloch 
& Proctor 1981 ; Da Costa, Knobloch & Weiss 1981 ; Proctor 1981) and by numerical 
simulation (Huppert & Moore 1976) establish that both 0s and EOS branches are 
subcritical with respect to Ra,,, but that the subcriticality and complication of the 
solutions, like that in the BBnard problem, decreases as the model is improved 
(subcriticality of 0s mode at the turning point So, in figure 2 declines to less than 
10 % of Ao in Huppert & Moore (1976), which has the case closest to our interest, i.e. 
Pr = 10, T = 0.1, Re = 1.4 x lo4). 

Thus, although the question is definitely still open, we assume that the onset of 
motion will occur near Ra,, since ponds have large Rs - Rs, of figure 1.  Its form, 
as indicated in figure 2, could be either subcritical steady motion (point Oz), 
subcritical oscillatory (point 0,) or chaotic (SA). Support for this assumption comes 
from the absence of any experimental reports of extremely subcritical onsets of 
motion (Shirtcliffe 1968,1970; Wright & Loehrke 1967 ; Zangrando 1979). Therefore 
we examine linear stability of a more pond-like basic state, with the stratifications 
of heat and salt being depth-dependent. These non-uniform gradients arise in ponds 
due to variability of thermophysical properties of the brine and due to construction 
and maintenance of the gradient layer, so they are almost always present. 

The effects of variable stratification can be treated as follows. Consider a layer with 
a quasisteady conductive solution S,(z), T,(z); let these functions be linear, except 
that S,(z) has a ‘dent ’ in it somewhere in the layer’s interior. Now a new lengthscale, 
the radius of curvature of the dent, has entered the problem. If this radius is very 
small, viscosity can prevent motion, even if the overall gradients are very close to 
neutral stability and the dent therefore has buoyant potential energy available 
locally. If the radius of curvature is large enough, motion will occur, but most of the 
layer, being stably stratified, will not participate except by secondary motions driven 
by the unstable region (weak penetrative convection). Thus the main motion will be 
confined to a sublayer of the scale of the dent in the salinity profile; i.e. localized 
vertically. This is precisely the behaviour of the pond described above. This vertical 
localization can be expected to be accompanied by horizontal localization of some 
scale if the sublayer is large enough. The principal aim of this paper is the 
determination of these lengthscales. The same question has been addressed by Walton 
(1982) by use of perturbation methods, employing our numerical results in $3.2 to 
guide the selection of the lengthscales that appear in the analysis of the overstable 
modes. No analogous problem seems to have been solved for the BQnard case, 
although Krishnamurti (1968a, b) considered a linearly varying temperature 
gradient. 
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The detailed goal is to determine how large the layer must be in order that the 
critical mode is effectively localized so that it has the eigenvalue given by Walton 
(1982). In addition, we seek to determine whether or not other modes are possible 
within the linear theory. These questions are answered by numerical solution of the 
eigenvalue problem posed in 92. The results are enumerated in 93 and discussed 
in $4. The conclusions of the analysis are summarized in $5. 

2. Statement of the problem 
Consider a static plane-parallel stratification of a solvent (water) with depth 

h, containing solute (salt) concentration S* = S,+ASS,(z), and heated to 
T* = T , + A T T , ( z ) .  Asterisks indicate dimensioned variables; S,, T,, AS, AT are 
specified reference values, and the dimensionless vertical coordinate z = z*/h is 
positive downward. The dimensionless equilibrium (conductive) stratification S,(z), 
T,(z) would in general depend on time t = t*/ (h2/K) as well as z, but it is assumed 
that the evolution timescale of the stratification is sufficiently long compared to 
convective timescales that this dependence can be ignored. Then, if both S, and T, 
are nonlinear functions of z, the thermal diffusion timescale is controlling (since 
T = D / K  is small here), while if T,(z) is linear, so that only 8, is evolving, the 
salt-diffusion timescale (a factor of 1 / T  longer) is controlling. Thus dimensionless 
timescales of the convection must be much less than O(1) in the former case, O ( ~ / T )  
in the latter. Thermophysical properties are presumed constant through the layer 
depth h. 

Let the dimensioned density p* of the solution depend on temperature and salinity 
linearly : 

p* = p:[l--(T*-T,)+b(S*-S,)] ,  (4) 

where 

All variables subscripted r are taken at the same reference state. If in addition density 
changes are considered only in the body force term of the equations of motion 
(Boussinesq approximation), then standard manipulations (e.g. Turner 1973 ; Zan- 
grando 1979) produce the following linearized equations for the evolution of small 
convective perturbations iZ, T ,  S in vertical velocity, temperature and salinity 
respectively : (p- Pr V.> V% = - Pr Ra V i  T+ Pr Rs V i S ,  (5a) 

( i - V ' ) F  = -j%, (&TVP)B = -giZ* 

That is, the convective motions have T*(s, y, z, t )  = T , + A n T , ( z )  +T(z, y, z, t ) ] ,  
S* = S,+ AS[S,(z)  +B(z, y ,  z, t ) ] ,  w* = ( ~ / h ) W ( z ,  y ,  z, t ) ,  with the overbarred quan- 
tities governed by (5 ) .  The quantities f and g on the right-hand sides of (5b ,  c )  are 
respectively the dimensionless temperature gradient f( z )  = dT,/dz and salinity 
gradient g(z)  = dS,/dz of the conductive solution, and it is their dependence on z that 
is novel here. The notation V i  is the two-dimensional Laplacian, a2/i3z2 + a2/ay2, while 
V 2  is the full Laplacian. 

Because the convective layers are observed to appear in the interior of the gradient 
zone 0 < z < 1, and because localization is expected to make the solutions insensitive 
to boundary conditions, free-free boundary conditions are specified : 

3 PLH 151 
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With these boundary conditions, the system (5) and (6) can be solved by normal- 
mode analysis, wherein the behaviour of perturbations of horizontal wavenumber 
a = ( k i + k i ) i  is examined; i.e. one sets 

p,m1 = ( w ( 4 ,  T(z) ,S(z) l  exp{i(k,z+kyy)+pt). 

In general, p = pr+ipi is a complex number, and the (complex) magnitudes 
w(z), T(z),  S(z) satisfy 

[p - -Pr (D2-~ ' ) ]  (D2-a2) w = a2Pr(RaT-R5S),  ( 7 4  

[ P - ( D ~ - U ~ ) ] T = - ~ ~ ,  [ P - T ( D ~ - u ~ ) ] S = - ~ W ,  (7b ,  4 

as a consequence of (5 ) .  Here D2 = d2/dz2, and boundary conditions for (7) are given 
by (6) without overbars. The stability problem thus becomes the determination, as 
functions of (7,  Pr, Rs) ,  of those values of Ra and pi (say) at which pr = 0 (neutral 
stability. The system (7) can be reduced to a single equation by elimination of T and 
S in favour of w, giving 

(ipi-7V2) (ipi-V2) (ip,-PrV2)V2w = a2Pr [-(ipi-7V2) (Rafw)+ (ipi-V2) (Rsgw)], 

(8) 

where Ve now means D2 - a2. Recasting (6) as boundary conditions in w alone yields 

w = D2w = D4w = Dew = 0 on z = 0 , l .  (9) 

We note explicitly that non-constant gradients prevent extending these conditions 
to all even-order derivatives, as could be done for constant gradients (Chandrasekhar 
1961). 

We treat both the overstable case ((8) and (9) with pi 9 0) and the exchange- 
of-stabilities case ( p  = 0) for which (8) reduces to the form 

[ - C ( D ~ - U ~ ) ' + ~ ] W  = Afw. (10) 

The reduced order results from assuming that w(z) is real, and observing that 
(D2-ae) F = 0 with F = 0 on z = 0 , l  can have only the trivial solution. The 
eigenparameter in (10) is 

A = 7 RalRs, 

while the (known) parameter e is defined by 

c = 7/aZRs. 

This parameter E is very small, 0(1O-l6), for a metre of heated brine. 
When E + O ,  (10) becomes singular. In fact, a continuous spectrum of A may be 

generated in this way. 
The problem (10) subject to the first three of (9) is positive-definite and self-adjoint 

iff@) and g(z) are both forbidden to change signs in z E (0,l) .  Therefore this restriction 
is imposed on the temperature and salinity gradients; i.e. neither temperature nor 
salinity is allowed to have an extremum in the gradient layer. Solution procedure 
then becomes very efficient and straightforward, as described in Zangrando & 
Bertram ( 1984). 

In  order to treat the overstability case, it  seems advantageous to proceed by 
slightly rewriting (8) in the form 

co(ipi- V2) (;pi - 7 V2) (ipi - Pr Vz) V2w - (ipi - V*) gw = - (ipi -7 V2) AOfw, (1 1 )  
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where the ‘0’ superscript indicates the overstable problem, with 

Ra 
and h o = -  €0 = - 

a2Pr Re Rs * 

1 

Boundary conditions are again (9). This problem is not symmetric, so general 
statements cannot be made about its spectrum a priori. However, the constant- 
gradient case (f = g = 1 )  has only a finite number of real eigenvalues with real p ,  
associated, so this same behaviour is anticipated here (and has been observed to be 
true for all cases computed.) Numerical solutions are obtained by expanding in 
Fourier series. Note that, if one sets p i  = 0, the exchange-of-stabilities problem (10)  
is recovered from (1 1 ). 

At this point it is convenient to consider what forms off@) and g(z) are physically 
relevant to the solar-pond application. From inspection of preconvective experimental 
data, it was decided that a cubic posesses enough structure to model the experiments 
(Zangrando 1979), giving the simplest gradient with an interior minimum, so the 
forms 

were adopted for the algorithm. The coefficients are not independent, but must satisfy 
the conditions T,(O) = S,(O) = 0 and T,(l) = SJ1) = 1.  Further, since the thermal 
diffusivity of water is so much larger than the salt-diffusion coefficient, T,(z) is 
expected to be much smoother than S,(z). 

For this reason, the stratification was simplified by making g(z )  symmetric about 
midlayer z = a and definingf(z) = 1. Thus, for the cases discussed below, 

T , ( z )  = a,+a,~+a,2~+a~z~,  S,(z) = b,+b,z+b2ze+b3z3  

(12)  
Sc(z)  = ~ + 4 ( 1 - g g , i n ) z ( z - + )  ( z - l ) ,  

ds, 
g(z) = = gmin+ 12(1-gmin) ( z - f I2  

will be the standard stratification. Note that the variability of the salt gradient is 
characterized by the single parameter gmin here, and that centring the ‘dent’ in the 
gradient minimizes the effects of the boundary conditions on the solutions (see $3 
below; this is in contrast with the cases studied by Shirtcliffe or Krishnamurti). 

Besides allowing a single-parameter representation of the departure from the 
constant-gradient case, (12)  also provide a stratification S,, T, that is antisymmetric 
about z = t.  This gives solutions w(z) which are either even functions of z - t  or odd 
ones; these can be separated and solved using a discrete problem of half the dimension 
of the full problem, a critical saving, since the parameter study was limited by 
computer time. 

The solutions investigated will thus be dependent on the parameters Pr, 7 ,  g,,,, Rs. 
The strength of the dependence on the first two can be inferred from the analytical 
solutions to the constant-gradient problem; here we study only the effects of varying 
gmin and Rs, with the first being a shape parameter of the variable gradient and the 
second being viewed essentially as a scale parameter which vanes as the fourth power 
of layer depth h when the average gradients over the layer are kept constant (1 OC/cm 
is typical). For heated brine, R8 = lo4 corresponds to about h = 1 cm, and Rs = 10l2 
to about h = 1 0 0  cm. 

3-2 
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3. Results 
The results summarized here are detailed in Zangrando & Bertram (1984), as are 

the numerical methods used. The procedure is to compute the eigenvalues A, Ao for 
parameters in the ranges 0.05 < gmin < 1.0 and lo4 < Rs < 10l2, then vary a2 until 
a minimum eigenvalue is achieved, and identify this mode with a ‘c’ (critical) 
subscript : a2 = a: yields Ra = Ra,. 

Since the purpose of the parameter study was to quantify the anticipated contest 
between buoyant potential energy and viscous dissipation, it is useful to introduce 
the dimensionless measures : 

Af(4 
g ( 4  

(:)A = fraction of layer depth in which - 2 A,, 

(13) I (9w = fraction of layer depth in which Iw(z)l 2 O.l~w~max.  

The reference constant-gradient eigenvalue A, is defined for Rs + 00 and for the same 
total temperature and salinity changes across the layer as the non-constant-gradient 
layer under consideration. Thus i t  usually represents an upper bound on the 
non-constant-gradient eigenvalue, since the latter has g(z) < 1 in the active sublayer. 
For exchange of stabilities this will be given by 

and for overstable modes by 
Raos = Pr+T 

RS P r + l *  
0 - -  - 

For convenience in comparing eigenvalues obtained at different gmin, a lower bound 
on eigenvalues is introduced by noting that no buoyant potential energy can be 
available in any sublayer until the weakest salinity gradient is small enough that the 
marginal-stability condition (3)  is reached. That means, since g(z) 2 gmin everywhere, 
for exchange of stabilities the non-constant-gradient eigenvalue must exceed 

AL = 4 Qmin = gmin ; 

and for oscillatory bifurcation i t  must exceed 

Pr+7 
A0 - - 

L - pr + 1 Qmin. 

The subscript ‘ L ’ indicates ‘ local ’ values, evaluated at the weakest salinity gradient 
of the layer. ( d l h ) ,  quantifies the size of the region in which the ‘main’ circulation 
(as opposed to viscously driven secondary motion) has significant magnitude. The 
eigenvalues plotted in the figures are A = (A-A,) /A,  and Ao = (ho-AO,)/AO,. Attain- 
ment of the limit Ao+O with increasing Rs will be referred to as ‘full localization’. 

3.1. Exchange of stabilities 

A particularly simple treatment of these results is possible for the case f(z) = 1, when 
g(z) is given by (12); then (10) becomes 

Rs T 1 - (D2-a2)3w = ~ ~ [ ( R a - ~ g , ~ ~ ) - 1 2 ( l - g ~ ~ ~ ) - ( z - $ ) ~  Rs w 
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where M = 12( 1 -gmin) Rs/7 is a specified constant independent of a2, and 

L = (A-gmin)Rs/7 

can be treated as the eigenvalue: L = L(a2, M). It follows immediately that we get 
the same L for every point on the locus (1 -gmin) Rs = constant for a given a2, and 
therefore get the same Lmin value at the same a:. Note that L-+ 0 for full localization. 

The invariance of the eigenfunction W ( Z )  and critical eigenvalue Lmin allows 
negative values of Ru and Rs (the ' fingering ' regime) as well, so long as gmin is replaced 
by gz,,, which must be greater than one; then the transformation 

RS*(1-&ax) = Rs(1 -gmin) 

makes M = constant, and the critical Ra* is given by 

Ru* = Ru+ (Rs*gz,, - R8 gmin)/7,  

which is also negative when Rs* is negative. Thus our numerical results are solutions 
for the heated- and salted-above case, as well as for the heated- and salted-below case 
for which they are derived. 

The same argument can be applied to the purely thermal case with parabolic 
temperature gradient f*(z) : 

- (D2 w = aaRa*[fz + 12( 1 -fz) ( z - + ) ~ ]  W. ( l o b )  

This problem has the same eigenfunction W ( Z )  as (10a) when its eigenvalue is 

and its stratification parameter is 
Ra* = L / f z  

1 l - A  -1 

fz = 1-M/12L = - ( A - g m m )  < O .  

Both fz and Ra* are negative because this problem must have an unstable central 
layer working against a strongly stable stratification near its boundaries, in order to 
be analogous to our problem. Because of this, lim f,*+ 1 is not possible, i.e. the BBnard 
problem is not a limit of (lob). Because both M and L must be varied to keep fz 
constant, the critical ae for the thermal problem is found by seeking crossings of the fz = constant rays and the numerically determined L,,,[M,aE(M)] locus in the 
(L, M)-plane. Thus we also solve the thermal problem when we solve (10a). 

Returning to the doubly diffusive case (lOa), we note that the solution of interest 
is the one with a:, so it is natural to scale by the transformation z, = u,(z-!j), result- 
ing in a stretched version of the equation 

- ( ~ ; - 1 ) 3 w  = (L , -M,Z;)W,  (10c) 

where Di = d2/dzi, L, = L/a; and M ,  = M/a& which is to be solved on the interval 
-& < z, < $,. All forms of (lo), including ( ~ O C ) ,  are exact. As Rs is increased, the 
interval length of this version of the problem increases. When it is long enough, our 
hypothesis that the localized solution be insensitive to boundary data must be 
reflected in ~ ( z , ) ,  L, and M, becoming asymptotically invariant. Consulting the 
numerical solutions, we find that this invariance holds for every case computed, 
with M, = 66.7f0.4 and L, = 35.2fO.l for 7 = &. Translated into the original 
variables of the problem, with gm implying either gmin or gmax, these numbers give 

[ 12( 1 -gm) Rs]: 
a, = = 1.560[( 1 - g m )  

7% 
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and 

Thus these simple considerations yield both the information that all the numerical 
solutions are fully localized, and the forms of the first correction terms as well. These 
are, of course, precisely the forms required to scale Walton's equation (18) into the 
form (10c). Also, since the smallest interval length over which (1Oc) was solved in 
our cases was 19.3, it is not very surprising that (1Oc) had become effectively 
asymptotic in form. 

The eigenfunction, plotted as roll stream function, is shown in figure 3. Reducing 
the scale by a factor 1004 = 2.154 at each 100-fold increase of Rs should leave the 
eigenfunction invariant ; the graphically more convenient scale factor of 2 that is used 
in figure 3 clearly shows this is the case. Furthermore, the width/height aspect ratio 
of the central cells has the constant value 0.71-0.72 for all cases. The scale was chosen 
so that the maximum stream-function amplitude lqmax = 0.11 ; this scale is chosen 
to facilitate comparison with Huppert t Moore's (1976) finite-amplitude solutions 
obtained for constant-gradient conditions. Figure 4 shows the density of the 
eigenvalues near A,, for Rs = 10l2. This density implies that interactions among 
modes are more easily excited as Rs increases. 

The d/h measures of localization can be evaluated from (14). From the definition 
of (d/h),  in (12) and from (13) 
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A, = gm +a: L, 7Rs-l = gm + 2.604( 1 -gm)j R s t .  (14b) 

(3, = z[,;&;-J = 0.932[(1-gm)Rs]~, (144 

which is a simple rearrangement of the result for A,. The numerical solutions 
uniformly show (dlh), = 2.33(d/h),, so 

(144  (d lh) ,  = 2.17[(1 -gm) Rs1-t 

accurately represents our numerical results. 

Lmin(M), results in 
Carrying out the calculation for a: for the thermal problem ( lob) ,  using (14) to get 

(15) 
Ra,* = 1410( f: - 1)2 , a,* = 2 . 5 2 [ ~ ] .  f2-1 i 

fl? 
In this expression, is constrained to be small, O(Rsf), by equations (14a, b). 

3.2. Overstable modes 

For constant gradients the overstable modes may be obtained analytically. The result 
differs from the exchange-of-stabilities result in that there are only a finite number 
of neutrally stable modes, and these exist only for a finite range of wavenumbers 
ak < a2 < ah, where a&,M are functions of 7 ,  Pr, Rs and eigenindex n. Because the 
non-constant-gradient problem (9) and (1 1) is not symmetric, no general statements 
can be made about its spectrum when gmin + 1 ,  but it does appear that it shares the 
properties of the spectrum of the gmin = 1 case. 

The numerical solutions for gmin < 1 have in addition the following difficulties. 

(1) To solve the problem (9) and ( l l ) ,  the frequency is iterated until Im{Ao} = 0 
is satisfied a t  eigenfrequency @i. This iteration proves to be computationally difficult 
because of multivalued and crowded branches 

(2) The multivalued and crowded Ao traces for a given a2 are reflected in 
multivalued and crowded (a2) curves. In  fact, the eigenvalues and eigenfrequencies 
are triple-valued for some a2, Rs values. This makes computational identification of 
critical modes difficult also. 

in the complex Ao plane. 
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FIQURE 4. First 35 eigenvalues for exchange-of-stabilities modes at Rs = 1Ol2, gmin = 0.95, 
a2 = 8924. These 35 fall between lowest eigenvalue of non-constant-gradient problem and eigen- 
value of oonstant-gradient solution with f = g = 1. Approach to continuous spectrum is apparent. 

(3) Because of the difficult behaviour of the AG,(a2) curves, and the similar 
behaviour of eigenfrequency curves $, (a2), no simple method of assigning eigenindex 
to a particular numerical solution exists. A very tedious and expensive procedure was 
used here : index was assigned by ordering branches in ascending order of eigenvalue 
at low a2 where the eigenbranches are widely separated. Then the continuity of the 
branch, inferred from the fact that the coefficients of (1 1) are entire functions of the 
parameters, is used to identify the index appropriate for a particular solution at  a 
large u2 value. 

Each of these difficulties is illustrated in Zangrando & Bertram (1984), which 
describes the basic numerical procedure used to obtain individual eigensolutions ; 
i.e. the set of values {A&,} for a given parameter set (7, Pr, Rs, gmin, a2). The technique 
by which the critical mode is extracted from these solutions is also described there; 
that is, the process of obtaining 

The resulting critical wavenumbers are displayed in figure 5 .  
When the layer is small, as in the case Rs = lo4, viscous forces clearly should favour 

motions with minimal spatial structure, and indeed the critical mode is very similar 
to the constant-gradient n = 1 mode with sinxz vertical structure and a: = +x2. 
The critical wavenumber at this Rs-value departs from in2 only for very large 
nonuniformity of salt stratification, with gmin < 0.5. 

On the other hand, when Rs = lo6, the layer is sufficiently deep that more spatial 
structure appears in the eigenfunctions when gmin is decreased from unity. At first, 
for 1.0 > gmin > 0.823, the whole layer motion with w(z) N sinxz appears, but at a 
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10-4 lo-' 1 )nl 10' 104 

4 
FIGURE 5. Critical horizontal wavenumber a: of overstable mode, as a function of minimum salinity 
gradient gmin. The x denotes critical mode; i.e. absolute minimum over a*. The 0 denotes relative 
minimum on A&(a*) curve at low a* values; i.e. at a* < in*. Eigenindex is noted if n =+ 1.  

significantly reduced wavenumber. Then at lower gmin the critical mode has a very 
different vertical structure and much larger at value, and this a: is only slightly 
reduced by further reductions in gmin. All these critical solutions, at both large and 
small a2 values, belong to the n = 1 eigenbrandh. Loops in A&(a2) sometimes appear 
between the relative minima. 

The behaviour of the streamlines for one example from each of the high- and low-a2 
branches is shown in figure 6. Because these are linear oscillatory modes, it suffices 
to display a quarter-period of the motion. Therefore the streamfunction is given at 
time intervals of & period, starting from t = 0. Note that the high-a2 solution, in 
addition to displaying some localization of the main circulation, has weak but 
noticeable motions at t = 0. Essentially, these are a measure of the streamfunction 
phase, as a function of depth z. This phase difference, which results from the variable 
stratification, becomes more pronounced with larger az in general. 

Increasing Re to los enhances the shift in critical wavenumber between low-a2 and 
high-a2 critical solutions, as shown in figure 5.  The jump between branches occurs 
at gmin % 0.94, much nearer constant-gradient conditions than the jump in the 
Rs = lo6 branches. In addition, the nature of the high-a2 eigenfunction has changed - 
rather than being a member of the n = 1 branch, it comes from the n = 5 branch at 
gmin = 0.90, as determined by tracing eigenvalue curves hFn)(a2). 

The low-a2 relative minima of ho(a2) were located only for gmin = 0.25 and 0.95 for 
the very large Rs-values of 1O'O and 10l2, because of computational expense. Since 
these are not the critical modes for these Rs-values, no motivation exists for tracing 
out the low-a2 branches in detail. 

Returning to figure 5, it can be seen that the high& critical mode at Rs = lolo, 
gmin = 0.95 has n = 7, while the gmin = 0.25 mode has n = 1. At Rs = 10l2 the effort 
of tracing out a sufficient number of branches in enough detail to determine 
eigenindices of the critical modes waa excessive, so calculation was done only to 
establish that at least one crossover of branches occurs. Thus, as indicated in the 
figure, all that can be said for the two cases of gmin at Rs = 1012 is that n 2 3. 

In  order to display the dependence of the overstable critical values on g,,,, the 
scaled critical value 

A=-- ho Ra, - AT,*, ': Ram Wmax, gmin-1 
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TimeIPeriod 

(a) 

FIGURE 6. Stream functions of critical overstable modes for Rs = 10'. (a) gmin = 0.95, 
a* = a: = 1.273, = 308.26; i.e. a low-a2 (whole layer) solution. (a) g,, = 0.75, a2 = a: = 76.0; 
i.e. a high-aP (localized) solution. Chain-dashed line is $ = 0 streamline. The enclosing rectangle 
has z = 0 at the top, z = 1 at the bottom, x = 0 at the left, and x = xc/a at the right. Time increases 
from top to bottom in timesteps of period. 
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FIQURE 7. Dependence of overstable critical Ra, on gmin. The straight solid line represents the 
infinite-Rs limit. The broken line is Walton's solution for Re = lo8 (equation (21)). This solution 
is valid up to gmin = 0.94. The chain-dashed lines extrapolating Rs = lo4 and 10' indicate that 
negative gmin is stable for small-enough layer sizes. 

is used (see figure 7). This choice makes explicit how much the thermal insulating 
capacity of a pond gradient layer is decreased by the redistribution of the salt. It 
also allows full display of the numerical points. 

As anticipated, the calculated eigenvalues fall between the constant-gradient 
values A:(R,,/Ros = 1.0) and the local value AO,(Ra,/Ra,,, = gmin), for the range of 
parameters covered. As expected, large Rs causes the eigenvalue to approach the 
value A t ,  which is plotted as the solid line in the figure. At smaller Re it is notable 
that extrapolations of the curves to zero eigenvalue requires negative gmin. This 
would imply that small reversed-salt-gradient zones can be tolerated, apparently 
because they are small enough that viscous stabilization is possible. A t  every Rs, the 
intercept of the eigenvalue curve with gmin = 0 appears to be positive, so these 
reversed-gradient solutions are possible for every finite Rs. 

The dependence of these solutions on Rs is made more explicit in figure 8. The plots 
indicate parameter values for the relative minima at both high and low u2 (figure 8a)  ; 
thus the critical mode is the relative minimum with the smaller Ao value. For 
gmin = 0.95 this means that the critical mode is the low-a2 branch for Rs 6 8 x los, 
which is the Rs-value at  which the eigenvalues of the two branches are equal in 
figure 8(b ) .  Above this value, the high-a2 branch is critical. 

The eigenfrequency 21, is plotted in figure 8 (c). For future reference, the constant- 
gradient (gmin = 1)  value, which is given by 

gi" = (l-T)--- Pr Rs E2]'., - 

P r + l  3 

is plotted as the chain-dashed line. The low-a2 branches for gmin = 0.25 and 0.95 have 
constant gi, and therefore appear as horizontal lines in the figure. With all these 
branches tending to converge at the left of the figure, the question as to how they 
are to be connected naturally arises. The connections indicated in the figure will be 
discussed below in $4. The localization tendency of the eigenfunction is apparent in 
figure 8d .  
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The stream function derived from the eigenfunction is plotted for gmin = 0.95 in 
figure 9. Again, rolls are assumed, and l$lmax = 0.11 is assigned, as wm done in the 
exchange of stabilities case in figure 3. The wavenumbers of these solutions are those 
identified as critical in figures 5 and 8(a) .  

If the critical eigenfunctions for gmin = 0.25 are plotted in the same way, only 
high-aa modes with n = 1 are observed (see figures 5 and 10). Their structure develops 
from zero-phase streamfunctions similar to the one in figure 9(a), to complex 
structures that differ from those in figure 9 (d) only in that they are somewhat more 
localized, and have somewhat different phase than the latter. Unlike the exchange- 
of-stabilities modes, the central cells for both gmin values display a central-cell aspect 
ratio (width/height) that decreases strongly with Rs. 

4. Discussion 
The critical modes for exchange-of-stabilities case proved to be quite conventional, 

with n = 1 in all cases, and a single relative minimum on the Ab,(a2) curves. The 
progressive localization with increasing Rs or decreasing gmin is made explicit by the 
stretching defined in (lOc). 

For the overstable critical modes, on the other hand, the numerical solutions 
display considerable complication. Both high- and low-a2 branches appear, and the 
high-a2 modes undergo mode switching to higher eigenindex as Rs or g,,, is increased. 
Nevertheless, considerable order can be inferred by inspecting the relations of these 
solutions in the (Rs,g,,,)-plane (see figure 11). 

First, we argue that even eigenfunctions w(z) (i.e. symmetric about the midplane 
z = t )  are always critical, because an odd eigenfunction will require more driving 
power to sustain the dissipation occurring in the additional velocity gradient at 
midlayer, but will be receiving less driving power because the displacement is zero 
where buoyant forces are maximum at midlayer. Next, we attribute the appearance 
of low-a2 critical modes to  two causes. When the layer is shallow, higher velocity 
gradients of localized w(z) solutions as compared with the smooth w(z) - sinxz 
solutions mean that the high-ae solutions are harder to sustain. When the layer is 
deep and gmin is near unity, the critical mode must be nearly sin xz,  since this is known 
to be the constant-gradient solution. Therefore the hatched region in figure 11 has 
the correct general shape. Note that this shape suggests that the high-a2 branch is 
isolated from the constant-gradient solutions in the sense that the jump to low-a2 
depicted in figure 5 is necessary before gmin = 1 can be approached. Therefore the 

FIGURE 8. Dependence of critical-mode parameters on Re for overstable modes. (a)  Wavenumbers 
of relative minima on high- and low-as branches. The dotted lines are curve fits to low-a2 solutions 
aa aaRe = k, with k = 1V and 0.7 x 106 respectively for gmin = 0.95 and 0.25. The chain-dashed lines 
are constant-gradient-case analytical solutions for gmin = 1. ( b )  Eigenvalue curves. The dotted lines 
are curve fit (25) with Ao = 0.023 and 1.313 respectively. Note absence of high-a2 numerical solution 
at Re < lo6. (c) Eigenfrequency curves. Low-aZ curve fits are Bi = const = 290.3 and 51.466 
respectively. (d) Localization of eigenfunctions, based on sublayer fraction in which Iwl 3 O.l~zu~,,,ax. 
Sublayer fraction with buoyant potential energy available, (dlh) , ,  is given by (dlh) ,  z 0.42(d/h),. 

Walton’s 
High& Low-a2 solution 

- 
_ _ _ _ _  

gmin = 0.95 0 El 
gmin = 0.25 0 0 
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, . -  
(a) 

FIGURE 10. Critical modes for gmln = 0.25 with increasing Rs. Streamfunction scale is as before. 
(a )  Rs = lo', a: = 4.36, f~~ = 36.37417, n = 1; (a) lo6, 61.075, 342.13, 1; (c) 108, 478, 3738.3, 1 ;  
( d )  1010, 4750, 41848, 1; (e) 10l3, 40421, 440970, n > 3. Broken lines indicate scale expansions 
by 2 x . Time increases from top row to bottom in time steps of & period. 

low-a2 branch has been shown in each case in figure 8 as connecting to the 
constant-gradient solutions, and the high-a2 branches have been shown as isolated. 

Within the unhatched zone of figure 11 where high-a2 solutions are critical, the 
new feature to be explained is the occurrence of mode switching. As argued in 5 1, 
vertically localized solutions should prefer to have increasing horizontal localization 
as well, which means these solutions automatically occur at high a2 values. In  this 
zone, at Rs < lo6 and small gmin values, an increase in the eigenindex results in a 
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Lowu2 (whole layer) 

gmin 

1 .O 

0.5 

0 
104 1 06 108  10'0 10'2 1014 

Rs 
FIGURE 11.  Critical-mode characterization for overstability at T = &, Pr = 7. Dots denote 
computation points: n = 1 etc. refers to eigenindex of critical mode. Chain-dashed line is con- 
stant-gradients case, double chain-dashed line is separatrix between zones with different critical 
eigenindex, broken line is sublayer scaling rule (eq. 20) for initial point P. Solutions at P and P* 
are compared in figure 12. 

clear increase of spatial structure in the main cell. This may be attributed to the 
branches being well separated at all a2, presumably because the more elaborate 
structures imply greater dissipation. As Rs increases, though, this viscous separation 
of branches must decrease. Simultaneously, increased localization (more vertical 
structure) becomes possible for solutions with larger a2 (more horizontal structure), 
but these are conjectured to be high-index solutions because of their fine-scale 
vertical structure. This tendency, combined with decreased viscous separation, 
implies that mode switching should occur. However, the numerical critical and 
near-critical modes are so complicated that no clear correlation to eigenindex is 
discernible. Identification of the mode switches with this contest between localization 
and dissipation also suggests the qualitative shape of the separatrices between 
indices. 

The separatrix shape can in fact be made quantitative by hypothesizing that the 
circulation in the main cell is insensitive to the detailed boundary conditions, so long 
as they are applied outside this cell. To see this, consider a sublayer of depth h*, 
centred at midlayer, 

!j-+h* < z < +++h*, 

The same solution should be obtained by solving the problem for this sublayer as 
for the whole layer, if the 'conductive' salinity and temperature profiles are 
appropriately rescaled. The rescaled salinity difference would be given by 

AS* = AS[S,(+++h*)-S,(!j-+h*)] = AS[h*+4(1 -gmin) h*(h*2- l ) ] ,  

so that the solute Rayleigh number is 

Rs* = Rsh*4[ l+(1-gmin)  (h*"l)], (17) 
and its corresponding minimum dimensionless gradient becomes 
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V 

, I W I  

FIQURE 12. Eigenfunction (vertical velocity) in sublayer for points P and P* of figure 11, 
related by sublayer-scaling rule (20). Only minor differences are visible at z = !j. 

where 
1 z - t  z* = -+-* 
2 h* 

Solving the neutral-stability problem with (RB*, g&) should then give the eigenvalue 

As a check, such a calculation has been carried out for the points P (RB = 10l2, 
gmin = 0.25) and P* (RB* = 4.48 x lo8, g& = 0.8929, h* = 0.20) in figure 11. The 
agreement between eigenfunctions is shown in figure 12, and the eigenvalues satisfy 
(19) to four significant figures. This is taken as numerical confirmation of the 
hypothesis that sublayer solutions are insensitive to boundary conditions applied 
outside the sublayer. 

Now, (17) and (18) are parametric forms of a locus Rs*(g&) in the plane of 
figure 11. Elimination of h* results in the explicit 'sublayer-scaling rule ' 

Along locus (20) the eigensolutions are essentially invariant in the sublayer zone, and 
too small to be significant outside it. If eigenindex corresponds to structure within 
the sublayer, then mode-switch separatrices should also be of form (20). Therefore 
the separatrices of figure 11 are given the shape of this locus, and placed on the 
(RB, gmin)-plane to be consistent with the indices of the numerical solutions. All have 
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the same shape because this is a universal curve in g,,, which merely shifts its position 
for different choices of the initial point (Rs, gmin). 

Clearly the locus (20) cannot be extended indefinitely in the direction of decreasing 
Rs in figure 11.  In particular, when h* corresponds to the central cell size (d lh) ,  of 
the original problem, the boundary conditions will be influencing the sublayer 
solution, so that (17)-( 19) no longer hold. If the jump to a low-a2 critical solution 
hasn’t already occurred for some other reason, it must occur by this h* value. As a 
working hypothesis, we suppose that each curve (20) is terminated at the left when 
h* = k(d/h), ,  where k is a constant only slightly greater than unity. The solid line 
in the figure has k = 1.2, based on the values for P and P*. This turns out to be 
consistent with the intersections of the high-a2 and low-a2 eigenvalue branches in 
figure 8 (b), increasing confidence in it. 

The sublayer-scaling rule (20) also applies to the exchange of stabilities solutions 
in the ‘ fingering ’ regime ; and it specifies precisely how a numerically difficult problem 
with large Rs may be reduced to a more accessible problem with smaller Rs*. A 
reasonably chosen sublayer with h* 2 1.2(d/h), centred on gmin can then be used to 
capture the critical mode of the original layer. 

With the numerical results ordered as in figure 11,  it is now convenient to discuss 
their relation to Walton’s (1982) perturbation solutions for the high-a2 modes. We 
start by collecting the relevant results from Walton in the following forms: 

A: = A: + 0.6514&,( 1 - gmin)i R d  + . . . , 

a, = 0.7243(1-gmin)~&mi,Rs~+... , (22) 

p ,  = 0.92955(gmi, R s ) ~  + . . . , (23) 

(21 1 
with hE = [ (Pr+7) / (Pr+ l)]gmin as before, and 

(d lh) ,  = 1.1417gkin(1 -gmin)-AR&+ ... . (24) 

In these expressions, (Pr,  7 )  have been given the values appropriate to brine, gmin is 
written in place of Walton’s Go, and the ‘0’ subscript of Walton has been replaced 
by ‘L’ (i.e. ‘fully localized’) on the leading terms of the expansions (21)-(24). 
The value (d lh ) ,  is obtained by determining the lengthscale required to make 
Iw(d*)l = O.lIw(O)( in Walton’s equation (40) for the Gaussian envelope to the 
eigenfunctions. The quantitative success of these expansions is apparent in figure 8. 

Qualitatively, it is clear that, even though the fully localized eigenvalue is the same 
as for a constant-gradient layer with Rs replaced by gmin Re, the a, and p, values 
are not derivable in this manner. It follows that the constant-gradient solution cannot 
be recovered by taking the limit gmin+ 1. In short, the perturbation solution, like 
the numerical solution, indicates that the high-a2 branch is isolated from the 
gmin = 1.0 case. The reason for this is readily traced back in Walton’s derivation to 
the scaling of the vertical coordinate i? as compared with the horizontal lengthscaling 
(E)-l; that is, the choice of 6 = eS, so that vertical diffusion is far weaker than 
horizontal diffusion. In the constant-gradient solution the two are comparable. 

A secondary issue raised by the isolation of the high-a2 solutions from the 
constant-gradient solutions is their actual region of validity. The perturbation scheme 
took no explicit notice of eigenindex, so no mode switching is taken into account. 
However, the quantitative agreement between (21)-(24) and the numerical results 
in figure 8 extends to the n =I= 1 cases; in fact is even better there. Thus validity is 
apparently guaranteed everywhere Re exceeds 10l2 in figure 11,  as indicated by the 
‘perturbation threshold ’ marking. 
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Overall, the numerical and perturbation solutions are complementary in the sense 
that the numerical parameters cover the regions inaccessible to the perturbation 
analysis, and vice versa. They are mutually supporting in that they agree very well 
in the zone of overlap around Rs - 10l2. Both show that localization occurs for the 
high-a2 neutral overstable modes, and that the secondary flows outside the turning 
points of (1 1) are exponentially weak. 

Having gained confidence from this dual approach that the linear-stability problem 
is correctly solved, and that we now know its solutions' properties, we return to the 
questions of its relevance to the observations. Wright & Loehrke (1976) attempted 
measurements of the constant-gradient free-fm case in a small tank, but the actual 
top and bottom boundary conditions were uncertain. Results generally indicated an 
oscillatory onset of motion, but data records were too short to give a reliable period 
measurement, or to determine what finite-amplitude state was being reached as the 
system evolved. Horizontal scale a, was not examined. Shirtcliffe (1967, 1969) used 
a variable stratification, with parabolic g(z)  having its maximum at the midplane. 
When motion began at the boundaries, he attempted to estimate the depth of the 
layer in motion, and to infer equivalent constant-gradient Ra, Rs values from it. This 
procedure was discussed by Wright & Loehrke; we note also that our results above 
indicate that the Rs values of 106-107 attained would be neither fully localized nor 
the low-a2 type (which is insensitive to stratification details) even if the boundary 
conditions had been controlled. Nevertheless, this system also showed oscillations at 
the onset of motion. As already mentioned, the solar pond observations (Zangrando 
1979) indicated that the motions in that case (very large Rs, variable stratification, 
and large but finite horizontal extent of about 15 m) evolved to steady amplitude. 
However, starting transients were not observed, and spatial structure of the 
circulating layers was not determined. The eigenvalues, though, agree with the fully 
localized value (21) within the experimental precision of & 10%. 

Experimental evidence, then, supports an overstable onset of motion in the 
neighbourhood of the localized overstable bifurcation, and, under pond field conditions, 
an evolution toward a finite-amplitude steady circulation. Data does not provide any 
reliable spatial or temporal detail on the critical modes. 

The lack of experimental detail leaves some uncertainty about the effects of finite 
amplitude. The numerical simulations of Huppert & Moore (1976) can be used to 
evaluate whether a subcriticality of 10% or less, as suggested by solar pond data, 
is to be expected. Although they could not reach the extreme parameters of interest 
here, (Pr, 7, Rs) = (10,0.1,1.4 x lo4) was reached. Not only did the subcriticality 
observed prove to be less than lo%, but also the structure of their solutions was 
qualitatively different from any of the linear eigensolutions for stratified or constant- 
gradient conditions, in that their values of ~~!5'~/~$~ and lfl/I$l were O(1) both in 
exchange of stabilities and overstable solutions, while linear solutions have quite 
different ratios. 

5. Conclusions 
The numerical solution of the linear stability problem for variable stratification 

in a doubly diffusive system has resulted in the conclusions that the overstable modes 
provide the critical eigenvalue, and that there are two eigenmode types with quite 
different forms. 

The first type is a localized, high-a2 mode that is accurately described by Walton's 
(1982) solutions (21)-(24). The family of localized overstable solutions is invariant 
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by the sublayer-scaling rule (20), i.e. the family is characterized by one free parameter 
instead of independent (Rs, gmin). 

The second occurs at small Rs ( Q  lo4) or near gmin = 1 (constant gradients) for 
all Rs; it is a 10w-a~ mode that is accurately described as having a nonlocalized 
eigenfunction w(z) = sin RZ + O( and an eigenvalue 

where Z(gmin) is independent of Rs. Like the eigenvalue, the critical eigenfrequency 
is independent of Rs beyond lo6, while critical wavenumber decreases like R s f .  

Exchange-of-stabilities solutions scale as described in (lOa), with numerical values 
given by (14) for both the diffusive and fingering cases, and are also invariant by the 
sublayer-scaling rule (20). The analogous, purely thermal problem is solved by (15). 

Experience in solar ponds indicates that the observed motions occur near the 
overstable eigenvalue, with a vertical scale compatible with the overstable solutions, 
but the motion appears to be steady. Evaluation of stability under field conditions 
is best carried out by use of gmin in (20)-(25), with (20) being used to map the 
physically interesting problem onto easy-to-solve numerical or perturbation para- 
meters in figure 11. 

The relevance of Joseph’s energy limit (3) is apparently limited to quite large 
perturbations, not the modest amplitudes of Huppert & Moore (1976), nor the 
sometimes substantial, uncontrolled perturbations acting on the solar pond (Zan- 
grando 1979). 

Finally, our solutions offer a resolution to the observation/theory impaase described 
by Huppert & Turner (1981) in their review. Since any specific boundary conditions 
prove to be difficult for either theory or experiment to handle, the indifference of the 
solutions given here to the boundary conditions should prove to be a great advantage 
experimentally. To match precisely the case analysed, an experiment need only 
provide the same temperature and salinity stratification in the sublayer. Such a 
salinity profile can be stably set up using isothermal fluid, and will be distorted by 
diffusion only very slowly. Then temperature gradients can be established by 
changing the boundary temperatures, thereby creating the most nearly linear 
gradient a t  the interior sublayer. Such control may allow one to measure the 
hysteresis of figure 2 with the same level of precision already achieved in the doubly 
diffusive Soret driven problem (e.g. Caldwell 1974, 1976). 
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